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We've now seen...
● Building of several sheaf models
● Inferring missing/noisy data

● Now how about some different data? Timeseries!
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Discrete-time LTI filters
● Linear Translation-Invariant filters are the 

workhorses of modern signal processing
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Filters as sheaf morphisms
● Theorem: Every discrete-time LTI filter can be 

encoded as a sequence of two sheaf morphisms*

S1                S2                  S3

Input Internal state Output

Weighted sum

Sheaf formalism

Hardware

Shift register

projection combination

*A commutative diagram of maps between the stalks of two sheaves
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Proof sketch: Input sheaf
● Sections of this sheaf are timeseries, instead of 

continuous functions
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Proof sketch: Output sheaf
● The output sheaf is the same
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Proof sketch: The internal state
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
ℝ0ℝ0ℝ0ℝ0
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Proof sketch: The internal state
● Loads a new value with each timestep
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Proof sketch: The internal state
● Computes linear functional of the shift register at 

each timestep (for instance, compute the mean)

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)

ℝ0ℝ0ℝ0ℝ0

(⅓ ⅓ ⅓) (⅓ ⅓ ⅓) (⅓ ⅓ ⅓)
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Proof sketch: Finishing both morphisms
● Put in a few zero maps!
● Note that the whole diagram commutes!

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0
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Controlled systems
● Theorem: Every discrete-time controlled dynamical 

system can be encoded as a sheaf diagram

S1                S2                  S3

Input Internal state Output

Dynamical system

Sheaf formalism

State variables

projection evolution

Control
variables

projectionevolution

Observed 
variables



 Michael Robinson

Controlled systems
● Theorem: Every discrete-time controlled dynamical 

system can be encoded as a sheaf diagram

● Interpret the diagram of sheaves as a sheaf itself
● Global sections across the whole diagram are feasible 

timeseries when certain controls are applied

S1                S2                  S3
projection evolution projectionevolution
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Optimally controlled systems
● Theorem: Optimal control is obtained by 

minimizing consistency radius on the diagram… 

… subject to the constraint that the top row 
remains a section

S1                S2                  S3
projection evolution

ℝ̂
cost function

0̂
objective

Local section here
Not required to be 
a section here

projectionevolution
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Robustly controlled systems
● Allowing for inconsistency throughout allows for 

control that tolerates observation error

● Theorem: Consistency radius across the entire 
diagram is a lower bound* on control error

S1                S2                  S3
projection evolution

ℝ̂
cost function

0̂
objective

projectionevolution

*See arxiv:2012.00120 for details
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A practical topological filter
The QuasiPeriodic Low Pass Filter 

(QPLPF)
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Circumventing bandwidth limits
● Traditional: averaging in a connected window

– Noise cancellation (Good)
– Distortion to the signal (Bad)

● Knowledge of the phase space: can safely do more 
averaging across the entire signal
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Stage 2:
Topological 

filtering

QPLPF block diagram

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

Ti
m

e

Neighbors

Average along rows
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Stage 2:
Topological 

filtering

How is this a topological filter?

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

Input base 
space is ℤ

Output base 
space is ℤ

Internal state base space is 
learned from the data
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Stage 2:
Topological 

filtering

How is this a topological filter?

Input signal Quasiperiodic
Factorization

Quotient
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

Samples grouped 
according to 
learned topology

Input 
timeseries

Output 
timeseries

AverageProject
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QPLPF results

Extremely stable output amplitudeSome low
frequency
distortion
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Compare: standard adaptive filter

Unstable amplitude
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Ocean radar image despeckling
After topological filtering:
● Speckle and contrast improved

QPLPF
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Conclusions
● Sheaves encompass standard LTI filters in a way that 

corresponds to filter hardware
● Sheaf-based filters generalize LTI filters to nonlinear 

ones
– The resulting filters can be tuned without too much effort
– Interested? See the work of Georg Essl on "topological 

filtering"
● Lunch!
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